ALDOL DIASTEREOSELECTION VIA ZIRCONIUM ENOLATES. **PRODUCT-SELECTIVE, ENOLATE STRUCTURE INDEPENDENT CONDENSATIONS.**

D. A. Evans and L. R. McGee Contribution No. 6258 from the Laboratories of Chemistry California Institute of Technology Pasadena, California 91125

Summary: Both (E)- and (Z)-zirconium enolates have been shown to undergo selective kinetic aldol condensation to give mainly erythro- β -hydroxy ketones, esters and amides.

It is now well established that highly diastereoselective kinetic aldol condensations can be executed if the appropriate steric control elements are incorporated into the metal enolate.^{1,2} For lithium enolates, where the enolate substituent, X, is sterically demanding or for boron enolates (M = BR₂), aldol product stereochemistry is strongly coupled to enolate geometry (e.g. lc + 2, lt + 3). For such metals, the stereoselective synthesis of a given enolate can be a major challenge. In order to circumvent this problem we have undertaken to **develop product selective aldol condensations which are independent of enolate geometry.**

In this communication we wish to disclose our observations on the erythro-product-selective aldol condensations of <u>cis and trans</u>-biscyclopentadienylchlorozirconium enolates Ic and It, $\overline{}$ **(Ml = CppZrC1) with aldehydes. III this study the zirconium enolates were conveniently prepared** from the corresponding lithium enolates by ligand exchange with Cp₂ZrCl₂.

The following control experiments demonstrated that loss of enolate geometry was not significant during the lithium-zirconium exchange. Enolization of tert-butyl thiopropionate (4) **with lithium diisopropylamide (LDA) in THF (-78°C) followed by a chlorotrimethylsilane quench afforded a ratio 5b:6b = 9O:lO as determined by gas chromatography.4 Analogous enoliza- __ __** tion of 4 with LDA followed by the addition of a THF solution of Cp₂ZrCl₂ afforded the zirconium enolates <u>5c</u> and 6c. Although this enolate mixture could not be directly silylated, **treatment of the mixture of 5c and 6c successively with T-butyllithium and chlorotrimethyl- __ -_** silane afforded enolsilanes in a ratio <u>5b</u>:<u>6b</u> = 88:12. It was thus concluded that \geq 98% **retention of enolate geometry accompanied the metal exchange.**

Table I summarizes the comparative lithium and zirconium aldol condensations of six carbonyl substrates with benzaldehyde. Where possible, the comparative lithium aldol results recently reported by Heathcock 2a are included. Entries A-C represent enolates with predominant "trans"-geometry It, while entries D-F provide examples of "cis"-enolates lc. In all cases, __ II the zirconium enolates exhibited good to excellent kinetic erythro diastereoselection. The high erythro product selection for amide enolates (entries E, F) appears to be general for a range of aldehydes (Table II).

Table I. Metal Enolate Condensations With Benzaldehyde.

%ldol product ratios analyzed by 'H NMR, l3 c NMR, GLC. \$Ref. 2a. 'Not determined. !!'I NMR spectrum of 13MeCH=C(OLi)N(CH2)4 exhibited only one methyl resonance.

Aldehyde	$X = -N(CH_2)_d$	Aldol Product Ratios $(2:3)^{\underline{a}, \underline{b}}$ $(= -N(CH_2)_4$ $X = -N(\underline{i} - C_3H_2)_2$
$n - C_{3}H_{7}$ CHO	94:6	98:2
i - C_3H_7 CHO	95:5	97:3
CH ₂ = CH ₂ CH ₂ = C-CH0	90:10	95:5

Table II. Condensations of the Zirconium Enolates of Amides 7 f and 8 With Representative Aldehydes.

satios determined by gas chromatography. by-Yields in all cases were 80-90% of isolated products.

For the preparation and aldol condensations of the zirconium enolates reported herein the following general procedure was followed: To a 0.1 molar solution of 1.1 equiv of LDA in 4:l THF-hexane at -78'C was added 1.0 equiv of carbonyl substrate. After 30 min, 1.1 equiv of a 0.16 M solution of Cp₂ZrC1₂ in THF was added and the resultant zirconium enolate was allowed **to form between -78°C and room temperature (30 min). After re-cooling to -78°C 0.9 to 1.1** equiv of aldehyde was added, stirred 1 h, and the reaction was quenched with saturated aqueous **ammonium chloride. After filtration, the product was extracted into methylene chloride, dried** (Na₂SO_n), and concentrated in vacuo. Aldol diastereoisomer ratios were determined by NMR and/or **gas chromatography.5 In the comparative lithium aldol condensations, the lithium enolates were** treated with 1.1 equiv of aldehyde followed by an NH₄Cl quench after 4-5 sec according to the **reported procedure. 2a**

That these conditions result in kinetic ratios was shown by monitoring the product ratio after quenching at -78°C for times ranging from a few seconds to several hours with no change observed. Additionally, a crossover experiment with p-chlorobenzaldehyde showed no crossover for esters and amides and only 20% crossover with t-butyl thiopropionate after 30 min at room _ temperature.6

Theory predicts that the 16-electron zirconocenes have a vacant oribital which lies in the X-Zr-X plane.7 The 16-electron bent-sandwich complexes of zirconium and titanium might be expected to form aldehyde-enolate chelates possessing the geometry 9. Little X-ray data

3978

exists for IS-electron bent-sandwich complexes; however, an estimate of the 0-Zr-0 angle in 9 of 60-80" is not unreasonable.8 If **one accepts the premise that metal enolate-derived aldol condensatio;s proceed via_ the pericyclic transition state 10 (eq 1)** originally proposed by *L*immerman,' <u>significantly</u> different preferred transition state conforma **tions could be expected as a result of O-M-O bond angle changes. Although detailed speculation**

as to the origin of the observed erythro product from either enolate is premature, we speculate that the trans-zirconium enolates It are reacting preferentially via pseudo-boat transition **states while the corresponding cis-enolates lc preferentially proceed via pseudo-chair transition _x states. Relevant steric factors which result in boat vs chair transition state selection originate from the sterically demanding cyclopentadienyl ligands and their interaction with the** enolate substituents (CH₃ and X). The utility of zirconium enolates in highly enantioselective **aldol condensations will be reported shortly.**

Acknowledgements. Support from the National Institutes of Health (GM-21746) and the National Science Foundation is gratefully acknowledged.

References and Notes

- 1. **(a)** D.A. Evans, E. Vogel, and J.V. Nelson, <u>J. Am. Chem. Soc.</u>, IQI, 6120 (1979); (b) H. **Hirama, D.S. Garvey, L.D.L. Lu, and S. Masamune, Tetrahedron Lett., 3937 (1979) and earlier references;** (c) T. Inoue and T. Mukaiyama, <u>Bull. Chem. Soc., Jpn.</u>, 53, 174 (1980).
- 2. **(a) C.H. Heathcock, C.T. Buse, W.A. Kleschick, M.C. Pirrung,** J.E. **Sohn, and 3. Lampe, J. Org.** Chem., 45, 1066 (1980) and references cited therein; (b) M.C. Pirrung, C.H. Heathcock,
- **3. J. Schwartz and co-workers have recently reported an example of a cyclopentanone zirconium enolate condensation with formaldehyde: J. Schwartz,** M.J. **Loots, and H. Kosugi, J. Am. Chem. Sot., 102, 1333 (1980).**
- **4. The assignment of the structure 5, to the major enolate formed with LDA has been made by the** analogy to the observations of Ireland and co-workers: R.E. Ireland, R.H. Mueller, and A.K.
Willard, <u>J. Am. Chem. Soc.</u>, 98, 2868 (1976).
- **5. 1 made by both H and 13 C-NMR. Satisfactory for all compounds reported.**
- **6.** C.A. Kingsbury, J. Org. Chem., <u>3</u>7, 102 (1972)*.*
- **7. J.W. Lauher and R. Hoffmann, J. Am. Chem. Sot., 98, 1729 (1976).**
- **8. (a) G. Fachinetti, C. Floriani, F. Marchetti, and S. Merlino, J. Chem. Sot., Chem. Commun., 522 (1976); (b) For comparison, the Cl-Zr-Cl of 97* has been determined in Cp2ZrC12:** K. Prout, et al., Acta Cryst., **B**₃₀, 2290 (1974).
- **9. H.E. Zimmerman and M.D. Traxler, J--Am. Chem. SOC., z9, 1920 (1957).**

(Received in USA 21 June **1980)**